

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS Coordenadoria do Curso de Graduação em Química

Campus Universitário Reitor João David Ferreira Lima - Trindade CEP 88040.900 -Florianópolis SC Fone: (48) 3721-6853/2312

E-mail: quimica@contato.ufsc.br - http://quimica.ufsc.br/

PLANO DE ENSINO SEMESTRE - 2022.2

I. IDENTIFICAÇÃO DA DISCIPLINA:							
CÓDIGO	NOME DA DISCIPLINA	TURMA	Nº DE HORAS-AULA SEMANAIS		TOTAL DE HORAS-		
			TEÓRICAS	PRÁTICAS	AULA SEMESTRAIS		
QMC5351	Química Analítica Instrumental	05003	02	02			
		05205	02	02	72		

II. PROFESSOR(ES) MINISTRANTE(S)

Ivan Gonçalves de Souza

III. PRÉ-REQUISITO		
CÓDIGO	NOME DA DISCIPLINA	
QMC 5350	Fundamentos de Química Analítica	

IV CURSO PARA O QUAL A DISCIPLINA É OFERECIDA

Cursos de Graduação de Engenharia de Alimentos.

V. EMENTA

Condutimetria. Potenciometria. Espectroscopia de Absorção Molecular no Ultravioleta e Visível. Espectrometria de Absorção Atômica. Espectrometria de Emissão Óptica por Plasma Indutivamente Acoplado (ICP OES) e espectrometria de massa com plasma indutivamente acoplado (ICP-MS). Fotometria de chama. Cromatografia Gasosa. Cromatografia Líquida de Alta Eficiência. Métodos Térmicos de Análise.

VI. OBJETIVOS

GERAL: Familiarização com as teorias fundamentais da análise instrumental.

ESPECÍFICOS: Aplicação dos diferentes métodos de análise estudados através de práticas de laboratório. Interpretação e discussão dos resultados obtidos, contribuindo para a solução dos diferentes problemas analíticos inerentes a uma análise química. Conscientização da importância da química analítica para a solução de problemas do cotidiano.

VII. CONTEÚDO PROGRAMÁTICO

UNIDADE 1 – Espectroscopia de Absorção Molecular no Ultravioleta e Visível. Introdução aos métodos espectroscópios. Aplicação da teoria quântica à espectroscopia. Absorção atômica e molecular de radiação: Espectros eletrônicos. Efeito da estrutura sobre a absorção. Lei de Beer. Instrumentação. Aplicações.

UNIDADE 2 – Espectrometria de Absorção Atômica. Princípios. Teoria. Instrumentação. Interferências. Análises qualitativas e quantitativas. Aplicações. Espectroscopia de fluorescência atômica e de fonte contínua

UNIDADE 3 - Espectrometria de Emissão Óptica por Plasma Indutivamente Acoplado (ICP OES) e Espectrometria de Massa com Plasma Indutivamente Acoplado (ICP-MS). Princípios. Teoria. Instrumentação. Interferências. Análises qualitativas e quantitativas. Aplicações.

UNIDADE 4 – Fotometria de chama. Princípios. Teoria. Instrumentação. Interferências. Análises qualitativas e quantitativas. Aplicações.

UNIDADE 5 – Condutimetria. Introdução aos Métodos Eletroquímicos. Definições e unidades. Teoria. Instrumentação. Titulações condutométricas.

UNIDADE 6 - Potenciometria. Celas eletroquímicas. Equação de Nernst. Eletrodos de referência e eletrodos indicadores. pH – Definição e medidas. Eletrodos íon seletivos. Titulações potenciométricas.

UNIDADE 7 – Métodos Térmicos de Análise. Características gerais dos métodos térmicos. Métodos termogravimétricos (TG). Análise térmica diferencial (DTA). Calorimetria exploratória diferencial (DSC).

UNIDADE 8 - Cromatografia Gasosa. Princípios da cromatografia gasosa. Instrumentação. Fases estacionárias, injetores e detectores para CG. Aplicações.

UNIDADE 9 – Cromatografia Líquida de Alta Eficiência. Princípios da CLAE. Eficiência da coluna em cromatografia líquida. Equipamentos e detectores para cromatografia líquida. Aplicações.

VIII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

As aulas teóricas serão expositivas com a utilização de quadro/giz ou projetor multimídia. As aulas práticas serão realizadas em grupos envolvendo quatro a seis alunos, onde os mesmos executarão experimentos descritos em literatura especializada (roteiros e/ou artigos científicos). Cada aluno fará o registro das atividades práticas em *portfólio*, o qual deverá ser preenchido no decorrer da aula prática. Serão realizadas visitas a laboratórios de pesquisa no Departamento de Química. Também, serão fornecidas listas de exercícios de fixação, as quais os alunos deverão resolver como atividade extraclasse.

IX. METODOLOGIA DE AVALIAÇÃO

A verificação do alcance do objetivo será feita de forma progressiva, através de instrumentos de avaliação. Serão realizadas três avaliações escritas ou orais, relativas ao conteúdo teórico e ao conteúdo prático.

- 1^a. Avaliação Parcial: 10 de outubro de 2022 Unidades 1, 2, 3 e 4.
- 2ª. Avaliação Parcial: 14 de novembro de 2022 Unidades 5 e 6.
- 3ª. Avaliação Parcial: 19 de dezembro de 2022 Unidades 1 a 9.

Será obrigatória a frequência às atividades correspondentes à disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo, a **75% (setenta e cinco por cento)** das mesmas. Será considerado aprovado o aluno que obtiver nota final da disciplina igual ou superior a seis (6,0). A nota final resultará das avaliações das atividades previstas no plano de ensino da disciplina, sendo a nota final calculada através da média aritmética das notas das avaliações parciais.

Observação: O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, deverá formalizar pedido de avaliação à Chefia do Departamento de Química, dentro do prazo de 3 (três) dias úteis, recebendo provisoriamente a menção I. O aluno que faltar alguma **avaliação** por **motivo de saúde** terá o direito de fazer a prova mediante pedido de avaliação à Chefia do Departamento de Química com apresentação do atestado médico dentro do **prazo de 3 (três) dias úteis** após a realização da mesma (Art. 74 da Resolução nº 017/CUn/97 – UFSC). Essa avaliação será realizada no dia **21 de dezembro de 2022**, com o conteúdo referente à avaliação que deve ser reposta.

X. NOVA AVALIAÇÃO

O aluno com frequência suficiente **(FS)** e média final das notas de avaliações do semestre **(A)** entre **3,0 (três)** e **5,5 (cinco vírgula cinco)** terá direito a uma *nova avaliação* **(Na)** no final do semestre a qual envolverá todo o conteúdo ministrado. O aproveitamento final **(Af)** será calculado com base na média aritmética simples entre a nota de aproveitamento **(A)** e a nota obtida na nova avaliação **(Na)**.

Af = (A + Na)/2

Nova Avaliação: 21/12/2022

Será considerado aprovado o aluno que obtiver nota final da disciplina **igual ou superior a seis (6,0)**. Todas as notas, médias parciais e finais sofrerão os arredondamentos previstos pelo Regulamento dos Cursos de Graduação da UFSC.

XI. CRONOGRAMA

1. CRONOGRAMA TEÓRICO:

Data	Conteúdo	H/A
29/08	Apresentação do calendário e ementa da disciplina. Bibliografia. Critérios de	
	avaliação. Espectrometria de absorção molecular.	
05/09	Espectrometria de Absorção Molecular.	
12/09	Espectrometria de Absorção Molecular.	
19/09	Espectrometria de Absorção atômica	
26/09	Espectrometria de Absorção Atômica.	
03/10	Espectrometria de Emissão Atômica por Plasma Indutivamente Acoplado (ICP OES	
	Fotometria de Chama	02
10/10	1ª. Avaliação.	
17/10	Condutimetria	
24/10	Potenciometria. Equação de Nernst.	02
31/10	Eletrodos de referência e eletrodos indicadores.	02
07/11	Métodos de separação – CG/HPLC	02
14/11	2ª Avaliação.	02
21/11	Métodos de separação – CG.	02
28/11	Métodos Térmicos de Análise	02
05/12	Métodos Térmicos de Análise	02
12/12	Prova atestado de saúde	02
19/12	3ª avaliação	02
2. CRON	OGRAMA PRÁTICO:	
Data	Conteúdo	H/A
31/08	Apresentação do calendário de práticas. Critérios de avaliação.	02
07/09	Independência do Brasil.	02
14/09	Experimento 01: Parte 1. Determinação de ferro por espectrometria de absorção molecular.	02
21/09	Experimento 01: Parte 2. Determinação de ferro por espectrometria de absorção molecular.	02
28/09	Experimento 02: Determinação de níquel por espectrometria de absorção molecular.	02
05/10	Experimento 03: Determinação do coeficiente de absorção molar de um composto.	
12/10	Nossa Senhora Aparecida	
19/10	Experimento 04: Determinação de cobre em aguardentes (parte 1).	
26/10	Experimento 04: Determinação de cobre por aguardentes (parte2).	
02/11	Finados	02
09/11	Experimento 05: Medida da condutividade de águas	
16/11	Experimento 06: Análise condutométrica de vinagre.	02 02
23/11	Experimento 07: Determinação potenciométrica do pKa e massa molar de um ácido orgânico.	02
30/11	Experimento 08: Titulação potenciométrica de ácido acetilsalicílico (AAS) ou ácido fosfórico	02
	em refrigerantes a base de cola.	02
l -	Métodos de separação – CG.	O2
07/12		
07/12 14/12 21/12	Métodos de Separação – CG e HPLC.	02

XII. BIBLIOGRAFIA BÁSICA

- D. Skoog; D. West; J. Holler; S. Crouch. **Fundamentos de Química Analítica**, tradução da 8ª. edição norte americana, Thomson, Brasil, 2005.
- D. Skoog; J. Holler; T. Nieman. Princípios de Análise Instrumental, 6ª. ed., Bookman, Brasil, 2009.
- D. C. Harris. **Análise Química Quantitativa**, 8a. ed., LTC, Brasil, 2012.

XIII. BIBLIOGRAFIA COMPLEMENTAR

- A. Vogel; J. Mendham; R.C. Denney; J.D. Barnes; M.J.K. Thomas. **Química Analítica Quantitativa**. 6^a. ed.; LTC, 2002.
- G. Christian; J. O'Reilly. Instrumental Analysis, 2nd. ed., Allyn and Baccon Inc., Singapura, 1987.
- F. Cienfuegos; D. Vaitsman. Análise Instrumental. Interciência, 2000.
- D. Sawyer; W. Heineman; J. Beebe. **Chemistry Experiments for Instrumental Methods**, John Wiley & Sons, USA, 1984.
- A.M. Brett; C.M.A. Brett. **Electrochemistry: principles, methods and applications.** Oxford: Oxford University Press, 1993. 427 p.

Assinatura do	Professor	Assinatura do Chefe do Departamento	
Г			
	Aprovado no Colegiado d	do Depto/ Centro	
	Em:/	/	